Genome-Wide Identification and Functional Characterization of the Acyl-CoA Dehydrogenase (ACAD) Family in Fusarium sacchari.

阅读:6
作者:Zeng Quan, Yu Quan, Mo Yingxi, Liang Haoming, Chen Baoshan, Meng Jiaorong
Fusarium sacchari is one of the primary causal agents of Pokkah boeng disease (PBD), an important disease of sugarcane worldwide. The acyl-CoA dehydrogenases (ACADs) constitute a family of flavoenzymes involved in the β-oxidation of fatty acids and amino acid catabolism in mitochondria. However, the role of ACADs in the pathogenesis of F. sacchari is unclear. Here, 14 ACAD-encoding genes (FsACAD-1-FsACAD-14) were identified by screening the entire genome sequence of F. sacchari. The FsACAD genes are distributed across seven chromosomes and were classified into seven clades based on phylogenetic analysis of the protein sequences. In vivo mRNA quantification revealed that the FsACAD genes are differentially expressed during sugarcane infection, and their expression patterns differ significantly in response to the in vitro induction of fatty acids of different classes. Fatty acid utilization assays of the FsACAD-deletion mutants revealed that the FsACADs varied in their preference and ability to break down different fatty acids and amino acids. There was variation in the adverse impact of FsACAD-deletion mutants on fungal traits, including growth, conidiation, stress tolerance, and virulence. These findings provide insights into the roles of FsACADs in F. sacchari, and the identification of FsACADs offers potential new targets for the improved control of PBD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。