Synthesis and Evaluation of Three Azide-Modified Disaccharide Oxazolines as Enzyme Substrates for Single-Step Fc Glycan-Mediated Antibody-Drug Conjugation.

阅读:10
作者:Zhang Xiao, Ou Chong, Liu Huiying, Wang Lai-Xi
Antibody-drug conjugates (ADCs) hold great promise for targeted cancer cell killing. Site-specific antibody-drug conjugation is highly desirable for synthesizing homogeneous ADCs with optimal safety profiles and high efficacy. We have recently reported that azide-functionalized disaccharide oxazolines of the Manβ1,4GlcNAc core were an efficient substrate of wild-type endoglycosidase Endo-S2 for Fc glycan remodeling and conjugation. In this paper, we report the synthesis and evaluation of new disaccharide oxazolines as enzyme substrates for examining the scope of the site-specific conjugation. Thus, azide-functionalized disaccharide oxazolines derived from Manβ1,4GlcNAc, Glcβ1,4GlcNAc, and Galβ1,4GlcNAc (LacNAc) were synthesized. Enzymatic evaluation revealed that wild-type Endo-S2 demonstrated highly relaxed substrate specificity and could accommodate all the three types of disaccharide derivatives for transglycosylation to provide site-specific azide-tagged antibodies, which were readily clicked with a payload to generate homogeneous ADCs. Moreover, we also found that Endo-S2 was able to accommodate drug-preloaded minimal disaccharide oxazolines as donor substrates for efficient glycan transfer, enabling a single-step and site-specific antibody-drug conjugation without the need of an antibody click reaction. The ability of Endo-S2 to accommodate simpler and more easily synthesized disaccharide oxazoline derivatives for Fc glycan remodeling further expanded the scope of this bioconjugation method for constructing homogeneous antibody-drug conjugates in a single-step manner. Finally, cell-based assays indicated that the synthetic homogeneous ADCs demonstrated potent targeted cancer cell killing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。