Glass as a construction material has become indispensable and is still on the rise in the building industry. However, there is still a need for numerical models that can predict the strength of structural glass in different configurations. The complexity lies in the failure of glass elements largely driven by pre-existing microscopic surface flaws. These flaws are present over the entire glass surface, and the properties of each flaw vary. Therefore, the fracture strength of glass is described by a probability function and will depend on the size of the panels, the loading conditions and the flaw size distribution. This paper extends the strength prediction model of Osnes et al. with the model selection by the Akaike information criterion. This allows us to determine the most appropriate probability density function describing the glass panel strength. The analyses indicate that the most appropriate model is mainly affected by the number of flaws subjected to the maximum tensile stresses. When many flaws are loaded, the strength is better described by a normal or Weibull distribution. When few flaws are loaded, the distribution tends more towards a Gumbel distribution. A parameter study is performed to examine the most important and influencing parameters in the strength prediction model.
Probability Density Function Models for Float Glass under Mechanical Loading with Varying Parameters.
阅读:7
作者:Symoens Evelien, Van Coile Ruben, JovanoviÄ BalÅ¡a, Belis Jan
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2023 | 起止号: | 2023 Mar 2; 16(5):2067 |
| doi: | 10.3390/ma16052067 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
