Delayed differentiation in embryonic stem cells and mesodermal progenitors in the absence of CtBP2

缺乏 CtBP2 时胚胎干细胞和中胚层祖细胞分化延迟

阅读:6
作者:Heather P Tarleton, Ihor R Lemischka

Abstract

Mammalian embryonic stem cells (ESCs) are characterized by an ability to self-renew and give rise to each of the three germ layers. ESCs are a pluripotential source of numerous primitive progenitors and committed lineages and can make stoichiometric decisions leading to either asymmetric or symmetric cell division. Several genes have been identified as essential for maintenance of self-renewal, but few non-lineage specific genes have been identified as essential for differentiation. We selected the chromatin factor Ctbp2 from microarray data for its enriched expression in stem cells, in comparison to committed progenitors. RNA interference (RNAi) was used to knockdown gene expression in mouse ESCs and the potential for transduced cells to self-renew and differentiate was assessed in ESC and mesodermal assays. Here, we demonstrate an important role for Ctbp2 in stem cell maintenance and regulation of differentiation using an in vitro system. The knockdown of Ctbp2 increases the prevalence of ESCs in culture, delays differentiation induced by LIF withdrawal, and introduces developmental changes in mesodermal differentiation. A model is presented for the importance of Ctbp2 in maintaining a balance in decisions to self-renewal and differentiate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。