Traditional glycosylation methods using thioglycosides often require harsh conditions or expensive metal catalysts. This study presents a more sustainable alternative by employing copper, an earth-abundant catalyst. We developed diazo-based thioglycoside donors that, through copper catalysis, undergo intramolecular activation to form glycosyl sulfonium ions, leading to the generation of oxocarbenium ions. This versatile approach efficiently accommodates a variety of O-nucleophiles, including primary, secondary, and tertiary, as well as complex bioactive molecules. It is compatible with various glycosyl donors and protecting groups, including superarmed, armed, and disarmed systems. Notably, the methodology operates orthogonally to traditional thioglycoside and alkyne donors and has been successfully applied to the orthogonal iterative synthesis of trisaccharides. Mechanistic insights were gained by studying the electronic effects of electron-donating (OMe) and electron-withdrawing (NO(2)) groups on the donors, offering a valuable understanding of the intramolecular reaction pathway.
Catalytic Thioglycoside Activation with Diazo-Derived Copper Carbenes.
阅读:3
作者:Singh Surya Pratap, Chaudhary Umesh, Sharma Indrajeet
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2024 | 起止号: | 2024 Nov 14; 29(22):5367 |
| doi: | 10.3390/molecules29225367 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
