Substituted seven-membered N-heterocycles are prevalent bioactive epitopes and useful synthons for preparing enzyme inhibitors or molecular recognition systems. To fully exploit the chemical properties of this flexible N-heterocycle scaffold, efficient methods for its diverse functionalization are required. Here we utilize the late-stage oxidation of tetrahydroazepines as an approach to access densely functionalized oxo-azepines in a total of 8 steps and ~30% overall yield from commercially available starting materials. Hydroboration of tetrahydroazepines proceeded with diastereoselectivity in a substrate-dependent manner to yield regioisomeric azepanols before their oxidation to the corresponding oxo-azepines. Regioselectivity of the hydroboration step may be improved moderately by a rhodium catalyst, albeit with loss of conversion to a competing hydrogenation pathway. Overall our method allows efficient access to azepanols and oxo-azepines as versatile epitopes and synthons with a high degree of diastereoselectivity and moderate regioselectivity.
Synthesis of Substituted Oxo-Azepines by Regio- and Diastereoselective Hydroxylation.
阅读:7
作者:Spedding Harold, Karuso Peter, Liu Fei
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2017 | 起止号: | 2017 Oct 31; 22(11):1871 |
| doi: | 10.3390/molecules22111871 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
