Artificial nucleic acids in which the conformation of the sugar or phosphate backbone of the oligonucleotide is appropriately fixed can form stable duplexes. In this study, we designed dinucleotides containing 2',3'-trans-bridged nucleic acids (2',3'-trans-BNAs) based on the idea that the sugar conformation and torsions angles δ, ε, ζ, α, and β of the backbone can be controlled by a 5,6- or 5,7-membered trans-fused ring skeleton cyclized between the 2'- and 3'-positions of the sugar moiety. Given that the construction of trans-5,6-fused ring skeletons is synthetically challenging, the synthesis was optimized and a detailed structural analysis of these new bridged 2',3'-trans-BNA systems was conducted. The 2',3'-trans-BNAs could be synthesized from a commercially available D-glucose derivative with the key intramolecular gold-catalyzed cyclization reaction achieved using a cyclization precursor bearing an intramolecular hydroxy group and an internal alkyne. Structural analysis of the 2',3'-trans-BNAs showed an N-type sugar conformation for all the derivatives, which is similar to that in RNA-duplex, and the ζ and α torsion angles for the 2',3'-trans-BNAs were a characteristic feature of the compounds that differ from the corresponding angles of the natural duplexes.
Synthesis and structural analysis of dinucleotides containing 2',3'-trans-bridged nucleic acids with trans-5,6- or 5,7-fused ring skeleton.
阅读:4
作者:Osawa Takashi, Nakanishi Ryota, Uda Keito, Muramoto So, Obika Satoshi
| 期刊: | Communications Chemistry | 影响因子: | 6.200 |
| 时间: | 2025 | 起止号: | 2025 Mar 22; 8(1):87 |
| doi: | 10.1038/s42004-025-01486-2 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
