Due to its excellency and versatility, many synthesis methods and conditions were developed to produce HKUST-1 ([Cu(3)(BTC)(2)(H(2)O)(3)](n)). However, the diversity of HKUST-1 was actually generated both in terms of characteristics and morphologies. Hence, the consistency of HKUST-1 characteristics and morphologies needs to be maintained. The statistical analysis and optimization provide features to determine the best synthesis condition. Here, a room-temperature coordination modulation method was proposed to maintain the morphology of HKUST-1 while reducing energy consumption. In addition, response surface methodology (RSM) was used to demonstrate the statistical analysis and optimization of the synthesis of HKUST-1. The molar ratio of ligand to metal, reaction time, and acetic acid concentration were studied to determine their effects on HKUST-1. The optimum HKUST-1 was obtained by the synthesis with a molar ratio of ligand to metal of 0.4703 for 27.2 h using 5% v/v acetic acid concentration. The statistical analysis performed a good agreement with the experimental data and showed the significance of three desired parameters on HKUST-1. The optimum HKUST-1 had the adsorption capacity of 1005.22 mg/g with a removal efficiency of 92.31% towards CV dye. It could be reused up to 5 cycles with insignificant decrease in performance.
Statistically Optimum HKUST-1 Synthesized by Room Temperature Coordination Modulation Method for the Adsorption of Crystal Violet Dye.
阅读:4
作者:Wijaya Christian J, Ismadji Suryadi, Aparamarta Hakun W, Gunawan Setiyo
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2021 | 起止号: | 2021 Oct 25; 26(21):6430 |
| doi: | 10.3390/molecules26216430 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
