In order to determine the relative contribution of checkpoint abrogation and subsequent aberrant mitotic entry to gemcitabine chemosensitization by CHK1 inhibition, we established a model utilizing the CDK inhibitors roscovitine or purvalanol A to re-establish cell cycle arrest and prevent aberrant mitotic entry in pancreatic cancer cells treated with gemcitabine and the CHK inhibitor AZD7762. In this study, we report that the extent of aberrant mitotic entry, as determined by flow cytometry for the mitotic marker phospho-Histone H3 (Ser10), did not reflect the relative sensitivities of pancreatic cancer cell lines to gemcitabine chemosensitization by AZD7762. In addition, re-establishing gemcitabine-induced cell cycle arrest either pharmacologically, with roscovitine or purvalanol A, or genetically, with cyclin B1 siRNA, did not inhibit chemosensitization uniformly across the cell lines. Furthermore, we found that AZD7762 augmented high-intensity γH2AX signaling in gemcitabine-treated cells, suggesting the presence of replication stress when CHK1 is inhibited. Finally, the ability of roscovitine to prevent chemosensitization correlated with its ability to inhibit AZD7762-induced high-intensity γH2AX, but not aberrant pHH3, suggesting that the effects of AZD7762 on DNA replication or repair rather than aberrant mitotic entry determine gemcitabine chemosensitization in pancreatic cancer cells.
Dissociation of gemcitabine chemosensitization by CHK1 inhibition from cell cycle checkpoint abrogation and aberrant mitotic entry.
阅读:3
作者:Parsels Leslie A, Tanska Daria M, Parsels Joshua D, Zabludoff Sonya D, Cuneo Kyle C, Lawrence Theodore S, Maybaum Jonathan, Morgan Meredith A
| 期刊: | Cell Cycle | 影响因子: | 3.400 |
| 时间: | 2016 | 起止号: | 2016;15(5):730-9 |
| doi: | 10.1080/15384101.2016.1148841 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
