T cell receptor zeta reconstitution fails to restore responses of T cells rendered hyporesponsive by tumor necrosis factor alpha.

阅读:2
作者:Clark Joanna M, Annenkov Alexander E, Panesar Manvinder, Isomäki Pia, Chernajovsky Yuti, Cope Andrew P
Expression and function of the antigen T cell receptor (TCR) play a central role in regulating immune responsiveness. Accordingly, targeting the expression of TCRalphabeta or its associated CD3 subunits profoundly influences T cell development and adaptive immunity. Down-regulation of the invariant TCRzeta chain has been documented in a wide variety of chronic inflammatory and infectious diseases, and is thought to contribute to the paradoxical immune suppression observed in these diseases. Previously, we reported that prolonged exposure of T cell hybridoma clones to tumor necrosis factor alpha (TNF) induces nondeletional and reversible hyporesponsiveness to TCR engagement, associated with down-regulation of TCRzeta chain expression, impaired TCR/CD3 complex assembly, and attenuation of TCR-induced membrane proximal tyrosine phosphorylation. Here, we have tested whether receptor specific T cell responses are rescued in TNF-treated T cell hybridomas by retroviral-mediated expression of zeta-chimeric (C2zeta) receptors or wild-type TCRzeta. Expression of C2zeta receptors at the cell surface is relatively refractory to chronic TNF stimulation. However, C2zeta receptor function depends on association with endogenous TCRzeta chains, whose expression is down-regulated by TNF, and so C2 receptor specific responses are attenuated in TNF-treated T cells. Unexpectedly, overexpression of wild-type TCRzeta maintains cell surface TCR/CD3 complex expression but fails to rescue receptor proximal signaling in TNF-treated T cells, suggesting the existence of hitherto unrecognized mechanisms through which TNF regulates T cell responsiveness. We provide additional evidence that TNF also uncouples distal TCR signaling pathways independently of its effects on TCRzeta expression.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。