The epigenome as a putative target for skin repair: the HDAC inhibitor Trichostatin A modulates myeloid progenitor plasticity and behavior and improves wound healing.

阅读:7
作者:Cabanel Mariana, da Costa Thayse Pinheiro, El-Cheikh Marcia Cury, Carneiro Katia
BACKGROUND: The molecular pathways that drive bone marrow myeloid progenitors (BMMP) development are very well understood and include a tight controlled multi-stage gene hierarch. Monocytes are versatile cells that display remarkable plasticity and may give rise to specific subsets of macrophages to proper promote tissue homesostasis upon an injury. However, the epigenetic mechanisms that underlie monocyte differentiation into the pro-inflammatory Ly6C(high) or the repairing Ly6C(low) subsets are yet to be elucidated. We have previously shown that Epigenetic mechanisms Histone Deacetylase (HDAC) dependent are crucial for monocyte behavior and plasticity and in this work, we propose that this same mechanism underlies BMMP plasticity upon an inflammatory challenge in vivo. METHODS: BMMP were culture in the presence of GM-CSF alone or in combination with HDAC inhibitor (iHDAC) and phenotyped by flow cytometry, immune staining or western blot. iHDAC was topically added to skin wounds for 7 consecutive days and wound healing was monitored by flow cytometry and histopathological analysis. RESULTS: When BMMP were cultured in the presence of iHDAC, we showed that the CD11b(low)/Ly6C(low) subset was the specific target of iHDAC that underwent chromatin hyperacetylation in vitro. Upon 13 days in the presence of iHDAC, BMMP gave rise to very elongated macrophages, that in turn, displayed a remarkable plasticity in a HDAC activity dependent fashion. HDAC-dependent cell shape was tight related to macrophage behavior and phenotype through the control of iNOS protein levels, showing that chromatin remodeling is a key component of macrophage plasticity and function. We then hypothesized that iHDAC would modulate the inflammatory response and favor tissue repair in vivo. To test this hypothesis, we topically added iHDAC to skin wounds during 7 consecutive days and followed tissue repair dynamics. In fact, iHDAC treated skin wounds presented an increase in wound closure at day 5 that was correlated to an enrichment in the CD11b(low)/Ly6C(low) subset and in very elongated F4/80 positives macrophages in vivo, fully recapitulating the behavior previously observed in vitro. CONCLUSION: Our work provides the biological basis that connects chromatin remodeling to phenotypic plasticity, which in turn, may become a tractable therapeutic strategy in further translational studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。