High-Performance Thermoelectric SnSe: Aqueous Synthesis, Innovations, and Challenges.

阅读:7
作者:Shi Xiao-Lei, Tao Xinyong, Zou Jin, Chen Zhi-Gang
Tin selenide (SnSe) is one of the most promising candidates to realize environmentally friendly, cost-effective, and high-performance thermoelectrics, derived from its outstanding electrical transport properties by appropriate bandgaps and intrinsic low lattice thermal conductivity from its anharmonic layered structure. Advanced aqueous synthesis possesses various unique advantages including convenient morphology control, exceptional high doping solubility, and distinctive vacancy engineering. Considering that there is an urgent demand for a comprehensive survey on the aqueous synthesis technique applied to thermoelectric SnSe, herein, a thorough overview of aqueous synthesis, characterization, and thermoelectric performance in SnSe is provided. New insights into the aqueous synthesis-based strategies for improving the performance are provided, including vacancy synergy, crystallization design, solubility breakthrough, and local lattice imperfection engineering, and an attempt to build the inherent links between the aqueous synthesis-induced structural characteristics and the excellent thermoelectric performance is presented. Furthermore, the significant advantages and potentials of an aqueous synthesis route for fabricating SnSe-based 2D thermoelectric generators, including nanorods, nanobelts, and nanosheets, are also discussed. Finally, the controversy, strategy, and outlook toward future enhancement of SnSe-based thermoelectric materials are also provided. This Review guides the design of thermoelectric SnSe with high performance and provides new perspectives as a reference for other thermoelectric systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。