To obtain a proton exchange membrane (PEM) with high proton conductivity and low methanol permeability, a novel amino-sulfo-bifunctionalized GO (NSGO) was synthesized and explored as a filler for sulfonated poly(arylene ether nitrile) (SPEN). The result indicated that the microstructure of composite membranes was rearranged by NSGO and strong acidâ»base interactions were formed between fillers and the SPEN matrix, affording enhanced thermal, mechanical, and dimensional stabilities. Moreover, it was found that NSGO fillers were uniformly dispersed in the SPEN matrix, generating efficient proton-conducting paths along the SPEN/NSGO interface. Meanwhile, the sulfonic and amino groups of NSGO served as additional proton hopping sites to connect the ionic clusters in the SPEN matrix, creating interconnected and long-range ionic pathways. In such a way, proton-conducting highways with low energy barriers are constructed, which enhance the proton conductivity of the composite membranes via the Grotthuss mechanism. Furthermore, the composite membranes also effectively prevent methanol permeation, and therefore high selectivity (the ratio of proton conductivity and methanol permeability) is endowed. Compared to SPEN membrane, a 3.6-fold increase in selectivity is obtained for the optimal composite membrane. This study will provide a new strategy for the preparation of high-performance PEM.
Constructing Continuous Proton-Conducting Highways within Sulfonated Poly(Arylene Ether Nitrile) Composite Membrane by Incorporating Amino-Sulfo-Bifunctionalized GO.
阅读:3
作者:Cheng Tao, Zhang Xuechun, Ma Yan, Huang Yumin, Liu Xiaobo
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2018 | 起止号: | 2018 Sep 10; 10(9):1005 |
| doi: | 10.3390/polym10091005 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
