Non-silicate nanoparticles for improved nanohybrid resin composites.

阅读:4
作者:Nakanishi Leina, Kaizer Marina R, Brandeburski Suzane, Cava Sergio S, Della Bona Alvaro, Zhang Yu, Moraes Rafael R
OBJECTIVE: Zirconia and alumina nanoparticles were coated with a silica-rich layer (ALSI and ZRSI) and used to prepare experimental nanohybrid resin composites, which were characterized and compared to a control commercial resin composite (Filtek Z350 XT). METHODS: Silica nanoparticles with sizes compatible to ALSI (Aerosil 150) and ZRSI (Aerosil OX 50) were tested as references. The volume of nanoparticles was equivalent across the composites, which also had consistent content of glass microparticles. CC conversion, viscosity, depth of cure, surface topography, hardness, opacity, radio-opacity, and edge chipping resistance (ReA) were tested after 24 h. Flexural strength (σ(f)) and fracture toughness (K(IC)) were also tested after 15 K thermal cycles. Data were analyzed using one-way or two-way ANOVA and Tukey's test (α = 0.05). RESULTS: ALSI and ZRSI yielded resin composites with lower viscosity and more irregular nanoagglomerates compared to nanosilica-based composites. CC conversion and depth of cure were lower for ZRSI composite, which had higher opacity, radio-opacity, and hardness. ReA was higher for ALSI composite. Composites with ALSI and ZRSI showed stable σ(f) after aging, whereas the control and Aerosil 150 resin composites showed significant degradation. The commercial and nanosilica-based composites showed up to 42% reduction in K(IC) after aging, whereas resin composites with ZRSI and ALSI showed a more stable K(IC). SIGNIFICANCE: ALSI and ZRSI generated nanohybrid resin composites with improved and/or more stable physical properties compared with nanosilica-based and commercial composites. This study suggests that changing the composition of nanofillers is a simple method to enhance the performance of nanohybrid composites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。