HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification.

阅读:4
作者:Litvinenko Alexander, Kriemann Ronald, Genton Marc G, Sun Ying, Keyes David E
We provide more technical details about the HLIBCov package, which is using parallel hierarchical (H-) matrices to: •Approximate large dense inhomogeneous covariance matrices with a log-linear computational cost and storage requirement.•Compute matrix-vector product, Cholesky factorization and inverse with a log-linear complexity.•Identify unknown parameters of the covariance function (variance, smoothness, and covariance length). These unknown parameters are estimated by maximizing the joint Gaussian log-likelihood function. To demonstrate the numerical performance, we identify three unknown parameters in an example with 2,000,000 locations on a PC-desktop.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。