Glycyrrhizin (GL) and Glycyrrhetic Acid 3-O-mono-β-D-glucuronide (GAMG) are the typical triterpenoid glycosides found in the root of licorice, a popular medicinal plant that exhibits diverse physiological effects and pharmacological manifestations. However, only few reports are available on the glycosylation enzymes involved in the biosynthesis of these valuable compounds with low conversion yield so far. In mammals, glycosyltransferases are involved in the phase II metabolism and may provide new solutions for us to engineer microbial strains to produce high valued compounds due to the substrate promiscuity of these glycosyltransferases. In this study, we mined the genomic databases of mammals and evaluated 22 candidate genes of O-glycosyltransferases by analyzing their catalytic potential for O-glycosylation of the native substrate, glycyrrhetinic acid (GA) for its glycodiversification. Out of 22 selected glycosyltransferases, only UGT1A1 exhibited high catalytic performance for biosynthesis of the key licorice compounds GL and GAMG. Molecular docking results proposed that the enzymatic activity of UGT1A1 was likely owing to the stable hydrogen bonding interactions and favorite conformations between the amino acid residues around substrate channels (P82~R85) and substrates. Furthermore, the complete biosynthesis pathway of GL was reconstructed in Saccharomyces cerevisiae for the first time, resulting in the production of 5.98 ± 0.47 mg/L and 2.31 ± 0.21 mg/L of GL and GAMG, respectively.
O-glycosyltransferases from Homo sapiens contributes to the biosynthesis of Glycyrrhetic Acid 3-O-mono-β-D-glucuronide and Glycyrrhizin in Saccharomyces cerevisiae.
阅读:3
作者:Xu Ke, Zhao Yu-Jia, Ahmad Nadeem, Wang Jing-Nan, Lv Bo, Wang Ying, Ge Jun, Li Chun
| 期刊: | Synthetic and Systems Biotechnology | 影响因子: | 4.400 |
| 时间: | 2021 | 起止号: | 2021 Jul 14; 6(3):173-179 |
| doi: | 10.1016/j.synbio.2021.07.001 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
