A two-phase fluid model for epidemic flow.

阅读:5
作者:Cheng Ziqiang, Wang Jin
We propose a new mathematical and computational modeling framework that incorporates fluid dynamics to study the spatial spread of infectious diseases. We model the susceptible and infected populations as two inviscid fluids which interact with each other. Their motion at the macroscopic level characterizes the progression and spread of the epidemic. To implement the two-phase flow model, we employ high-order numerical methods from computational fluid dynamics. We apply this model to simulate the COVID-19 outbreaks in the city of Wuhan in China and the state of Tennessee in the US. Our modeling and simulation framework allows us to conduct a detailed investigation into the complex spatiotemporal dynamics related to the transmission and spread of COVID-19.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。