BACKGROUND: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. OBJECTIVES: We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. METHODS: Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bioavailability and bioaccessibility. RESULTS: In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R² = 0.92). Among physicochemical properties, combined concentrations of iron and aluminum accounted for 80% and 62% of the variability in estimates of RBA and bioaccessibility, respectively. CONCLUSION: The multifaceted approach described here yielded congruent estimates of As bioavailability and evidence of interrelations among physicochemical properties and bioavailability estimates.
Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils.
阅读:6
作者:Bradham Karen D, Scheckel Kirk G, Nelson Clay M, Seales Paul E, Lee Grace E, Hughes Michael F, Miller Bradley W, Yeow Aaron, Gilmore Thomas, Serda Sophia M, Harper Sharon, Thomas David J
| 期刊: | Environmental Health Perspectives | 影响因子: | 9.800 |
| 时间: | 2011 | 起止号: | 2011 Nov;119(11):1629-34 |
| doi: | 10.1289/ehp.1003352 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
