A common task in medical imaging is assessing whether a new imaging system, or a variant of an existing one, is an improvement over an existing imaging technology. Imaging systems are generally quite complex, consisting of several components-for example, image acquisition hardware, image processing and display hardware and software, and image interpretation by radiologists- each of which can affect performance. Although it may appear odd to include the radiologist as a "component" of the imaging chain, because the radiologist's decision determines subsequent patient care, the effect of the human interpretation has to be included. Physical measurements such as modulation transfer function, signal-to-noise ratio, are useful for characterizing the nonhuman parts of the imaging chain under idealized and often unrealistic conditions, such as uniform background phantoms and target objects with sharp edges. Measuring the performance of the entire imaging chain, including the radiologist, and using real clinical images requires different methods that fall under the rubric of observer performance methods or "ROC" analysis, that involve collecting rating data on images. The purpose of this work is to review recent developments in this field, particularly with respect to the free-response method, where location information is also collected.
New developments in observer performance methodology in medical imaging.
阅读:5
作者:Chakraborty, Dev, P
| 期刊: | Semin Nucl Med | 影响因子: | 0.000 |
| 时间: | 2011 | 起止号: | 2011 Nov;41(6):401-18 |
| doi: | 10.1053/j.semnuclmed.2011.07.001 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
