Transcriptional profiling of suberoylanilide hydroxamic acid (SAHA) regulated genes in mineralizing dental pulp cells at early and late time points.

阅读:3
作者:Duncan Henry F, Smith Anthony J, Fleming Garry J P, Moran Gary P, Cooper Paul R
Dental pulp tissue can be damaged by a range of irritants, however, if the irritation is removed and/or the tooth is adequately restored, pulp regeneration is possible (Mjör and Tronstad, 1974 [1]). At present, dental restorative materials limit healing by impairing mineralization and repair processes and as a result new biologically-based materials are being developed (Ferracane et al., 2010 [2]). Previous studies have highlighted the benefit of epigenetic modification by histone deacetylase inhibitor (HDACi) application to dental pulp cells (DPCs), which induces changes to chromatin architecture, promoting gene expression and cellular-reparative events (Duncan et al., 2013 [3]; Paino et al., 2014 [4]). In this study a genome-wide transcription profiling in epigenetically-modified mineralizing primary DPC cultures was performed, at relatively early and late time-points, to identify differentially regulated transcripts that may provide novel therapeutic targets for use in restorative dentistry. Here we provide detailed methods and analysis on these microarray data which has been deposited in Gene Expression Omnibus (GEO): GSE67175.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。