AIM: The aim of this study was to investigate whether Gs-Rbl relieves the CoCl(2)-induced apoptosis of hypoxic neonatal rat cardiomyocytes and in which the role of glucose transporter-4 (GLUT-4). METHODS: Gs-Rbl (0, 10, 50, 100, 200, 400, and 500 micromol/L), adenine 9-beta-D-arabinofuranoside (ara A, 500 micromol/L; AMPK inhibitor) and wortmannin (0.5 micromol/L; PI3K inhibitor) only in combination with 200 micromol/L Gs-Rbl were administered in hypoxic cardiomyocytes, which were induced by 500 micromol/L CoCl(2) for 12 h. Then, the apoptotic rate (AR), 2-[(3)H]-deoxy-D-glucose (2-[(3)H]-DG) uptake, and the expression of GLUT-4 (including in plasma membrane, PM), phospho-AMPKalpha (Thr172), AMPKalpha and Akt in cells were assayed. RESULTS: Compared with simple hypoxia (0 micromol/L Gs-Rbl), Gs-Rb1 greater than 10 micromol/L significantly decreased the apoptotic rate (P<0.01) and significantly increased 2-[(3)H]-DG uptake (P<0.01), GLUT-4 content in cells and PM (P<0.01), AMPK activity (P<0.01) and Akt (P<0.01) levels in a dose-dependent manner. AMPK activity was completely suppressed by ara-A, just as Akt was suppressed by wortmannin. The AR, glucose uptake and GLUT-4 levels in cells and PM were partly down-regulated by ara-A or wortmannin. CONCLUSION: Gs-Rb1 may protect neonatal rat cardiomyocytes from apoptosis induced by CoCl(2). The anti-apoptotic effect of Gs-Rb1 may occur by improving glucose uptake, in which GLUT-4 translocation and expression played a key role. Both the AMPK and the PI3K/Akt pathways may take part in the anti-hypoxic efficacy of Gs-Rb1.
Anti-hypoxic effect of ginsenoside Rbl on neonatal rat cardiomyocytes is mediated through the specific activation of glucose transporter-4 ex vivo.
阅读:7
作者:Kong Hong-liang, Wang Jian-ping, Li Zhan-quan, Zhao Shu-mei, Dong Jing, Zhang Wei-wei
| 期刊: | Acta Pharmacologica Sinica | 影响因子: | 8.400 |
| 时间: | 2009 | 起止号: | 2009 Apr;30(4):396-403 |
| doi: | 10.1038/aps.2009.2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
