In recent years, the application of Deep Learning techniques has shown remarkable success in various computer vision tasks, paving the way for their deployment in extraterrestrial exploration. Transfer learning has emerged as a powerful strategy for addressing the scarcity of labeled data in these novel environments. This paper represents one of the first efforts in evaluating the feasibility of employing adapters toward efficient transfer learning for rock segmentation in extraterrestrial landscapes, mainly focusing on lunar and martian terrains. Our work suggests that the use of adapters, strategically integrated into a pre-trained backbone model, can be successful in reducing both bandwidth and memory requirements for the target extraterrestrial device. In this study, we considered two memory-saving strategies: layer fusion (to reduce to zero the inference overhead) and an "adapter ranking" (to also reduce the transmission cost). Finally, we evaluate these results in terms of task performance, memory, and computation on embedded devices, evidencing trade-offs that open the road to more research in the field. The code will be open-sourced upon acceptance of the article.
Efficient adaptation of deep neural networks for semantic segmentation in space applications.
阅读:8
作者:Olivi Leonardo, Santero Mormile Edoardo, Tartaglione Enzo
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 May 23; 15(1):18046 |
| doi: | 10.1038/s41598-025-99192-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
