BACKGROUND: As gait speed and transfer times are considered to be an important measure of functional ability in older adults, several systems are currently being researched to measure this parameter in the home environment of older adults. The data resulting from these systems, however, still needs to be reviewed by healthcare workers which is a time-consuming process. METHODS: This paper presents a system that employs statistical process control techniques (SPC) to automatically detect both positive and negative trends in transfer times. Several SPC techniques, Tabular cumulative sum (CUSUM) chart, Standardized CUSUM and Exponentially Weighted Moving Average (EWMA) chart were evaluated. The best performing method was further optimized for the desired application. After this, it was validated on both simulated data and real-life data. RESULTS: The best performing method was the Exponentially Weighted Moving Average control chart with the use of rational subgroups and a reinitialization after three alarm days. The results from the simulated data showed that positive and negative trends are detected within 14 days after the start of the trend when a trend is 28 days long. When the transition period is shorter, the number of days before an alert is triggered also diminishes. If for instance an abrupt change is present in the transfer time an alert is triggered within two days after this change. On average, only one false alarm is triggered every five weeks. The results from the real-life dataset confirm those of the simulated dataset. CONCLUSIONS: The system presented in this paper is able to detect both positive and negative trends in the transfer times of older adults, therefore automatically triggering an alarm when changes in transfer times occur. These changes can be gradual as well as abrupt.
Developing a system that can automatically detect health changes using transfer times of older adults.
阅读:4
作者:Baldewijns Greet, Luca Stijn, Vanrumste Bart, Croonenborghs Tom
| 期刊: | BMC Medical Research Methodology | 影响因子: | 3.400 |
| 时间: | 2016 | 起止号: | 2016 Feb 20; 16:23 |
| doi: | 10.1186/s12874-016-0124-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
