Imipramine inhibition of TRPM-like plasmalemmal Mg2+ transport in vascular smooth muscle cells.

阅读:7
作者:Hamaguchi Yukihisa, Tatematsu Yasushi, Furukawa Koichi, Matsubara Tatsuaki, Nakayama Shinsuke
Depression is associated with vascular disease, such as myocardial infarction and stroke. Pharmacological treatments may contribute to this association. On the other hand, Mg(2+) deficiency is also known to be a risk factor for the same category of diseases. In the present study, we examined the effect of imipramine on Mg(2+) homeostasis in vascular smooth muscle, especially via melastatin-type transient receptor potential (TRPM)-like Mg(2+) -permeable channels. The intracellular free Mg(2+) concentration ([Mg(2+) ](i) ) was measured using (31) P-nuclear magnetic resonance (NMR) in porcine carotid arteries that express both TRPM6 and TRPM7, the latter being predominant. pH(i) and intracellular phosphorus compounds were simultaneously monitored. To rule out Na(+) -dependent Mg(2+) transport, and to facilitate the activity of Mg(2+) -permeable channels, experiments were carried out in the absence of Na(+) and Ca(2+) . Changing the extracellular Mg(2+) concentration to 0 and 6 mM significantly decreased and increased [Mg(2+) ](i) , respectively, in a time-dependent manner. Imipramine statistically significantly attenuated both of the bi-directional [Mg(2+) ](i) changes under the Na(+) - and Ca(2+) -free conditions. This inhibitory effect was comparable in influx, and much more potent in efflux to that of 2-aminoethoxydiphenyl borate, a well-known blocker of TRPM7, a channel that plays a major role in cellular Mg(2+) homeostasis. Neither [ATP](i) nor pH(i) correlated with changes in [Mg(2+) ](i) . The results indicate that imipramine suppresses Mg(2+) -permeable channels presumably through a direct effect on the channel domain. This inhibitory effect appears to contribute, at least partially, to the link between antidepressants and the risk of vascular diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。