Comparative Study of Augmented Classical Least Squares Models for UV Assay of Co-Formulated Antiemetics Together with Related Impurities.

阅读:7
作者:Al-Saleem Muneera S M, Darwish Hany W, Naguib Ibrahim A, Draz Mohammed E
The classical least squares (CLS) model and three augmented CLS models are adopted and validated for the analysis of pyridoxine HCl (PYR), cyclizine HCl (CYC), and meclizine HCl (MEC) in a quinary mixture with two related impurities: the CYC main impurity, Benzhydrol (BEH), which has carcinogenic and hepatotoxic effects, and the MEC official impurity, 4-Chlorobenzophenone (BEP). The proposed augmented CLS models are orthogonal signal correction CLS (OSC-CLS), direct orthogonal signal correction CLS (DOSC-CLS), and net analyte processing CLS (NAP-CLS). These models were applied to quantify the three active constituents in their raw materials and their corresponding dosage forms using their UV spectra. To evaluate the CLS-based models sensibly, we design a comparative study involving two sets: the training set to construct models and the validation set to assess the prediction abilities of these models. A five-level, five-factor calibration design was established to produce 25 mixtures for the calibration set. In addition, 16 experiments were performed for a test set distributed equally between the in-space and out-space samples. The primary criterion for comparing the models' performance was the validation set's root mean square error of prediction (RMSEP) value. Finally, augmented CLS models showed acceptable results for assaying the three analytes. The results were compared statistically with the reported HPLC methods; however, the DOSC-CLS model proved the best for assaying the dosage forms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。