Simultaneous spectrophotometric determination of Co (II) and Co (III) in acidic medium with partial least squares regression and artificial neural networks.

阅读:5
作者:Yasin Nausheen, Naqvi Syed Mumtaz Danish, Akhter Syed Mamnoon
This study aims at the application of two chemometric techniques to visible spectra of acetic acid solutions of Co (II) and Co (III) for simultaneous determination thereof. Spectral data of 145 samples in the range of 400-700 nm were used to build the models. Partial least squares regression models were developed for which latent variables were determined using internal cross-validation with a leave-one-out strategy and 3 and 2 latent variables were selected for Co(II) and Co(III) based on root mean square error of cross-validation. For these models, root mean square errors of prediction were 1.16 and 0.536 mM and coefficients of determination were 0.975 and 0.892 for Co (II) and Co (III). As an alternate method, artificial neural networks consisting of three layers, with 10 neurons in hidden layer, were trained to model spectra and concentrations of cobalt species. Levenberg-Marquardt algorithm with feed-forward back-propagation learning resulted root mean square errors of prediction of 0.316 and 0.346 mM for Co (II) and Co (III) respectively and coefficients of determination were 0.996 and 0.988.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。