Synthetic extreme environments: overlooked sources of potential biotechnologically relevant microorganisms.

阅读:3
作者:Sibanda Timothy, Selvarajan Ramganesh, Tekere Memory
Synthetic extreme environments like carwash effluent tanks and drains are potential sources of biotechnologically important microorganisms and molecules which have, however, remained unexplored. Using culture- and molecular-based methods, a total of 17 bacterial isolates belonging to the genera Shewanella, Proteus, Paenibacillus, Enterobacter and Citrobacter, Aeromonas, Pseudomonas and Pantoea were identified. Hydrocarbon utilization and enzyme production screening assays showed that Aeromonas sp. CAC11, Paenibacillus sp. CAC12 and Paenibacillus sp. CAC13 and Citrobacter sp. PCW7 were able to degrade benzanthracene, naphthalene and diesel oil, Paenibacillus sp. CAC12 and Paenibacillus sp. CAC13 could produce cellulase enzyme, while Proteus sp. BPS2, Pseudomonas sp. SAS8 and Proteus sp. CAL3 could produce lipase. GC-MS analysis of bacterial secondary metabolites resulted in identification of 107 different compounds produced by Proteus sp. BPS2, Paenibacillus sp. CAC12, Pseudomonas sp. SAS8, Proteus sp. CAL3 and Paenibacillus sp. CAC13. Most of the compounds identified by both GC-MS and LC-MS have previously been determined to have antibacterial, antifungal and/or anticancer properties. Further, microbial metabolites which have previously been known to be produced only by plants or microorganisms found in natural extreme environments were also identified in this study. This research has revealed the immense bioresource potential of microorganisms inhabiting synthetic extreme environments.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。