Bio-oriented synthesis of new sulphadiazine derivatives for urease inhibition and their pharmacokinetic analysis.

阅读:3
作者:Hamad Asad, Khan Mohsin Abbas, Ahmad Irshad, Khalil Ruqaiya, Khalid Muhammad, Abbas Urva, Azhar Rahat, Uddin Jalal, Batiha Gaber El-Saber, Khan Ajmal, Shafiq Zahid, Al-Harrasi Ahmed
Current research is based on biology-oriented synthesis of sulphadiazine derivatives and determination of their urease inhibitory activity. In this regard, a series of (E)-4-(benzylideneamino)-N-(pyrimidin-2-yl)benzenesulfonamide was synthesized from sulphadiazine and substituted aromatic aldehydes. The structures of synthesized compounds were ascertained by spectroscopic techniques, such as, FTIR, NMR and HRMS analysis, and in-vitro and in-silico investigation were carried out for the inhibition of urease. Ureases are harmful for humans by producing by-products of urea (ammonia and carbon dioxide). The most active compound (3l) against urease exhibited IC(50) value of 2.21 ± 0.45 µM which is 10 times more potent than the standard thiourea (20.03 ± 2.06 µM). It is noteworthy that most of our synthesized compounds showed significant to excellent activities against urease enzyme and most of them substituted by halogen or hydroxy groups at ortho and para positions in their structures. Inhibition of enzyme by the synthesized analogues was in descending order as 3l > 3a > 3b > 3q > 3e > 3o > 3s > 3t > 3g > 3k > 3r > 3f > 3m > 3p > 3n > 3j > 3i > 3h. Moreover, molecular docking studies were performed to rationalize the binding interactions of the synthesized motifs with the active pocket of the urease enzyme. The synthesized sulphadiazine derivatives (3a-u) were found to be non-toxic, and presented passive gastrointestinal absorption.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。