Highly Dispersive Gold Nanoclusters Confined within Micropores of Defective UiO-66 for Highly Efficient Aldehyde Oxidation at Mild Conditions.

阅读:7
作者:He Ming-Qin, Chang Xin-Yu, Li Hong-Wei, Wu Yuqing
The oxidative esterification of aldehydes under mild conditions remains a significant challenge. This study introduces a unique defective UiO-66 to achieve gold nanoclusters (AuNCs) for efficient aldehyde oxidation under mild conditions. The construction and characterization of these materials are thoroughly investigated by techniques of XRD, SEM and TEM images, FT-IR, Raman, and XPS spectrum, emphasizing the unique microporous in defective UiO-66 are conducive to the fabrication of AuNCs. The catalytic performance of the prepared materials in aldehyde oxidation reactions is systematically evaluated, demonstrating the remarkable efficiency of dispersed Au@UiO-66-25 with high-content (9.09 wt%) Au-loading and ultra-small size (~2.7 nm). Moreover, mechanistic insights into the catalytic process under mild conditions (70 °C for 1 h) are provided, elucidating the determination of defective UiO-66 in the confined fabrication of AuNCs and subsequent furfural adsorption, which underlie the principles governing the observed enhancements. This study establishes the groundwork for the synthesis of highly dispersed and catalytically active metal nanoparticles using defective MOFs as a platform, advancing the catalytic esterification reaction of furfural to the next level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。