A model to study the inhibition of nsP2B-nsP3 protease of dengue virus with imidazole, oxazole, triazole thiadiazole, and thiazolidine based scaffolds.

阅读:4
作者:Vishvakarma Vijay Kumar, Shukla Nidhi, Reetu, Kumari Kamlesh, Patel Rajan, Singh Prashant
A theoretical model was developed to allosterically inhibit the biological activity of dengue virus (DENV) by targeting the non-structural protein ns2B-nsP3 protease based on the in silico studies. The imidazole, oxazole, triazole, thiadiazole, and thiazolidine based scaffolds were imported from the ZINC database, reported by various research group with different biological activity. They were found biologically active as they contain heterocyclic fragments. Generic evolutionary based molecular docking was performed to screen the highly potent molecule. The docking results show that the molecule having ZINC ID-633972 is best inhibitor. Further, the bioavailability and other physiochemical parameters were also calculated for the top four molecule. The highly potent molecule was further refined by the density functional theory and molecular dynamic (MD) simulation. The MD analysis coroborate the successful docking of the molecule in the binding cavity of nsP2B-nsP3 protease of DENV. The Molecular Mechanics Poisson-Boltzmann Surface Area approach was also applied and result coroborate the docking and MD result.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。