Antioxidant activity and anti-exercise-fatigue effect of highly denatured soybean meal hydrolysate prepared using neutrase.

阅读:5
作者:Xu Jing, Zhao Qingshan, Qu Yanyan, Ye Fei
Highly denatured soybean meal is a by-product of soybean oil extraction obtained through high-temperature desolventization. High-temperature treatment can result in soybean protein denaturation. Compare with ordinary soybean meal, the protein structure of highly denatured soybean meal has changed. Highly denatured soybean meal was pretreated with thermal treatment or ultrasonication, and then hydrolyzed with neutrase. The ultrasonicated hydrolysate exhibited better antioxidant activity than the thermally treated hydrolysate. The ultrasonication increased 1,1-diphenyl-2-pycryl hydrazyl (DPPH) radical scavenging activity by 8.31 % and reduction capacity by 10.19 %. The highly denatured soybean meal hydrolysate ultrasonicated at 400 W exhibited the highest antioxidant activity. The DPPH radical scavenging activity was 56.22 % and reduction capacity was 0.717. The ultrasonicated hydrolysate at 400 W was fractionated using ultrafiltration into three fractions: I (>10 kDa), II (5 kDa to 10 kDa), and III (<5 kDa). The in vitro antioxidant activity and others in vivo anti-exercise-fatigue effect of the three fractions (I, II, and III) were determined. Fraction III exhibited the highest DPPH radical scavenging activity and reduction capacity, improved the hemoglobin and hepatic glycogen content and reduced blood urea nitrogen and blood lactic acid. Fraction III improved the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) and reduced the malonaldehyde (MDA) content in mouse livers. Therefore, the highly denatured soybean meal hydrolysate has an anti-oxidative effect and it significantly alleviates exercise-fatigue in mice. Amino acids of hydrolysate were determined. Results showed that the antioxidant activity and anti-exercise-fatigue effect were related to the amino acid compositions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。