All-or-none amyloid disassembly via chaperone-triggered fibril unzipping favors clearance of α-synuclein toxic species

通过分子伴侣触发的纤维解链进行的全或无淀粉样蛋白分解有利于清除 α-突触核蛋白毒性物质

阅读:9
作者:Aitor Franco, Pablo Gracia, Adai Colom, José D Camino, José Ángel Fernández-Higuero, Natalia Orozco, Alexander Dulebo, Leonor Saiz, Nunilo Cremades, Jose M G Vilar, Adelina Prado, Arturo Muga

Abstract

α-synuclein aggregation is present in Parkinson's disease and other neuropathologies. Among the assemblies that populate the amyloid formation process, oligomers and short fibrils are the most cytotoxic. The human Hsc70-based disaggregase system can resolve α-synuclein fibrils, but its ability to target other toxic assemblies has not been studied. Here, we show that this chaperone system preferentially disaggregates toxic oligomers and short fibrils, while its activity against large, less toxic amyloids is severely impaired. Biochemical and kinetic characterization of the disassembly process reveals that this behavior is the result of an all-or-none abrupt solubilization of individual aggregates. High-speed atomic force microscopy explicitly shows that disassembly starts with the destabilization of the tips and rapidly progresses to completion through protofilament unzipping and depolymerization without accumulation of harmful oligomeric intermediates. Our data provide molecular insights into the selective processing of toxic amyloids, which is critical to identify potential therapeutic targets against increasingly prevalent neurodegenerative disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。