Enriched environment remedies cognitive dysfunctions and synaptic plasticity through NMDAR-Ca2+-Activin A circuit in chronic cerebral hypoperfusion rats

丰富的环境通过 NMDAR-Ca2+-Activin A 回路治疗慢性脑灌注不足大鼠的认知功能障碍和突触可塑性

阅读:7
作者:Xin Zhang, Xiaohua Shi, Jiaoqi Wang, Zhongxin Xu, Jinting He

Abstract

Chronic cerebral ischemia (CCI) is one of the critical factors in the occurrence and development of vascular cognitive impairment (VCI). Apoptosis of nerve cells and changes in synaptic activity after CCI are the key factors to induce VCI. Synaptic stimulation up-regulates intraneuronal Ca2+ level through N-methyl-D-aspartic acid receptor (NMDAR) via induction of the activity-regulated inhibitor of death (AID) expression to produce active-dependent neuroprotection. Moreover, the regulation of synaptic plasticity could improve cognition and learning ability. Activin A (ActA), an exocrine protein of AID, can promote NMDAR phosphorylation and participate in the regulation of synaptic plasticity. We previously found that exogenous ActA can improve the cognitive function of rats with chronic cerebral ischemia and enhance the oxygenated glucose deprivation of intracellular Ca2+ level. In addition to NMDAR, the Wnt pathway is critical in the positive regulation of LTP through activation or inhibition. It plays an essential role in synaptic transmission and activity-dependent synaptic plasticity. The enriched environment can increase ActA expression during CCI injury. We speculated that the NMDAR-Ca2+-ActA signal pathway has a loop-acting mode, and the environmental enrichment could improve chronic cerebral ischemia cognitive impairment via NMDAR-Ca2+-ActA, Wnt/β-catenin pathway is involved in this process. For the hypothesis verification, this study intends to establish chronic cerebral hypoperfusion (CCH) rat model, explore the improvement effect of enriched environment on VCI, detect the changes in plasticity of synaptic morphology and investigate the regulatory mechanism NMDAR-Ca2+-ActA-Wnt/β-catenin signaling loop, providing a therapeutic method for the treatment of CCH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。