Graphene oxide as selective transporter of flavonols for physiological target DNA: A two-color fluorescence approach.

阅读:4
作者:Sengupta Bidisha, Coleman Justin, Johnson John, Feng Manliang
Our study determines the selectivity of graphene oxide (GO) to recognize its ligands (e.g. flavonoids) in facilitating the binding with their respective cellular targets. The polyhydroxy phenolic compounds, flavonoids, have a broad spectrum of therapeutic activities with high potency and low systemic toxicity. Despite the vast medicinal importance, their bioavailability is low. In this exploratory study, GO has been used as the transporter of three flavonols fisetin (3, 7, 3', 4'-OH flavone), quercetin (3, 5, 7, 3', 4'-OH flavone), and morin (3, 5, 7, 2', 4'-OH flavone) for the physiological target DNA. Calf thymus DNA is chosen as the model physiological target. Characterization of GO is performed using FTIR, Raman and dynamic light scattering (DLS) spectroscopy. The strong absorption peak at 1730 cm(-1) indicated the presence of carbonyl groups (C=O) at the edges of GO. The presence of sp(3) carbons due to oxidation of sp(2) carbons in GO is further proved by Raman spectroscopy. DLS provided the average size of the GO particles to be ~9 μm. The dual luminescence behavior of the flavonols has been used in this study for the noninvasive sensing of the GO-flavonol and GO-flavonol-DNA interactions; as well as for the selectivity of GO for one flavonol over other in transferring the ligand to DNA. Furthermore, circular dichroism (CD) indicated that the optical activity of GO undergoes drastic change when conjugated with flavonols. Molecular modeling corroborated the findings from the binding studies. GO provides high promise as facilitators for drug delivery.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。