Vicenin-2, a flavonoid categorized as a flavones subclass, exhibits a distinctive and uncommon C-glycosidic linkage. Emerging evidence challenges the notion that deglycosylation is not a prerequisite for the absorption of C-glycosyl flavonoid in the small intestine. Capitalizing on this experimental insight and considering its biological attributes, we conducted different assays to test the anti-aggregative and antioxidant capabilities of vicenin-2 on human serum albumin under stressful conditions. Within the concentration range of 0.1-25.0 μM, vicenin-2 effectively thwarted the heat-induced HSA fibrillation and aggregation of HSA. Furthermore, in this study, we have observed that vicenin-2 demonstrated protective effects against superoxide anion and hydroxyl radicals, but it did not provide defense against active chlorine. To elucidate the underlying mechanisms, behind this biological activity, various spectroscopy techniques were employed. UV-visible spectroscopy revealed an interaction between HSA and vicenin-2. This interaction involves the cinnamoyl system found in vicenin-2, with a peak of absorbance observed at around 338 nm. Further evidence of the interaction comes from circular dichroism spectrum, which shows that the formation of bimolecular complex causes a reduction in α-helix structures. Fluorescence and displacement investigations indicated modifications near Trp214, identifying Sudlow's site I, similarly to the primary binding site. Molecular modeling revealed that vicenin-2, in nonplanar conformation, generated hydrophobic interactions, Pi-pi stacking, and hydrogen bonds inside Sudlow's site I. These findings expand our understanding of how flavonoids bind to HSA, demonstrating the potential of the complex to counteract fibrillation and oxidative stress.
Anti-Aggregative and Protective Effects of Vicenin-2 on Heat and Oxidative Stress-Induced Damage on Protein Structures.
阅读:5
作者:Patanè Giuseppe Tancredi, Lombardo Lisa, Putaggio Stefano, Tellone Ester, Ficarra Silvana, Barreca Davide, Laganà Giuseppina, De Luca Laura, Calderaro Antonella
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2023 | 起止号: | 2023 Dec 7; 24(24):17222 |
| doi: | 10.3390/ijms242417222 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
