This paper presents an enhanced artificial lemming algorithm (EALA) for solving complex unmanned aircraft system (UAV) path planning problems in three-dimensional environments. Key improvements include chaotic initialization, adaptive perturbation, and hybrid mutation, enabling a better exploration-exploitation balance and local refinement. Validation on the IEEE CEC2017 and CEC2022 benchmark functions demonstrates the EALA's superior performance, achieving faster convergence and better algorithm performance compared to the standard ALA and 10 other algorithms. When applied to UAV path planning in large- and medium-scale environments with realistic obstacle constraints, the EALA generates Pareto-optimal paths that minimize length, curvature, and computation time while guaranteeing collision avoidance. Benchmark tests and realistic simulations show that the EALA outperforms 10 algorithms. This method is particularly suited for mission-critical applications with strict safety and time constraints.
An Enhanced Artificial Lemming Algorithm and Its Application in UAV Path Planning.
阅读:4
作者:Zhu Xuemei, Jia Chaochuan, Zhao Jiangdong, Xia Chunyang, Peng Wei, Huang Ji, Li Ling
| 期刊: | Biomimetics | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 6; 10(6):377 |
| doi: | 10.3390/biomimetics10060377 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
