In vitro and in vivo evaluation of pterostilbene for the management of diabetic complications.

阅读:3
作者:Dodda Dilip, Rama Rao Ajmera, Veeresham Ciddi
BACKGROUND: Aldose reductase (AR) and Advanced glycation end product (AGE) are known to play important roles in the development of diabetic complications. The inhibitors of AR and AGE would be potential agents for the prevention of diabetic complications. OBJECTIVE: The present study was aimed to evaluate the aldose reductase (AR) and advanced glycation end product (AGE) inhibitory potential of pterostilbene for its possible role in the treatment of diabetic complications such as cataract. MATERIALS AND METHODS: The compound was studied for its inhibitory activity against rat lens AR (RLAR) and rat kidney AR (RKAR) in vitro along with its ability to inhibit the formation of AGEs. Anticataract activity of pterostilbene was demonstrated using sugar induced lens opacity model in isolated cattle lens. Further, the involvement of pterostilbene in galactosemia in rats was investigated by assessing the key markers in the polyol pathway and the results were compared with that of a potent AR inhibitor, fidarestat. RESULTS: Pterostilbene exhibited inhibitory activity against RLAR and RKAR with IC50 values of 5.49 mg/ml (21.4 mM) and 6.40 mg/ml (25.02 mM), respectively. In sugar-induced lens opacity model, pterostilbene displayed a significant protective effect by preventing opacification and formation of polyols in cattle lens. Besides, the compound exhibited in vivo inhibition of galactitol accumulation in lens and sciatic nerves of galactose fed rats. CONCLUSION: The results obtained in the study underline the potential of pterostilbene as possible therapeutic agent against long-term diabetic complications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。