Ecological dynamics of toxic Microcystis spp. and microcystin-degrading bacteria in Dianchi Lake, China.

阅读:4
作者:Zhu Lin, Wu Yanlong, Song Lirong, Gan Nanqin
Toxic cyanobacterial blooms directly threaten both human safety and the ecosystem of surface waters. The widespread occurrence of these organisms, coupled with the tumor-promoting properties of the microcystin toxins that they produce, demands action to mitigate their potential impacts and, thus, a robust understanding of their ecological dynamics. In the present work, the abundance of toxic Microcystis spp. and microcystin (MC)-degrading bacteria in Dianchi Lake, located in Yunnan Province, China, was studied using quantitative PCR. Samples were taken at monthly intervals from June 2010 to December 2011 at three sampling stations within this freshwater lake. Results revealed that variation in the abundance of both total Microcystis spp. and toxic Microcystis spp. exhibited similar trends during the period of the algal bloom, including the reinvasion, pelagic growth, sedimentation, and overwintering periods, and that the proportion of toxic Microcystis was highest during the bloom and lowest in winter. Importantly, we observed that peaks in mlrA gene copy numbers of MC-degrading bacteria occurred in the months following observed peaks in MC concentrations. To understand this phenomenon, we added MCs to the MC-degrading bacteria (designated strains HW and SW in this study) and found that MCs significantly enhanced mlrA gene copy numbers over the number for the control by a factor of 5.2 for the microcystin-RR treatment and a factor of 3.7 for the microcystin-LR treatment. These results indicate that toxic Microcystis and MC-degrading bacteria exert both direct and indirect effects on each other and that MC-degrading bacteria also mediate a shift from toxic to nontoxic populations of Microcystis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。