Effect of Milling on Nutritional Components in Common and Zinc-Biofortified Wheat.

阅读:5
作者:Jiang Zefang, Zhou Shiyue, Peng Yu, Wen Xin, Ni Yuanying, Li Mo
Biofortification is one of the most successful approaches to enhance the level of micronutrients in wheat. In the present study, wheats with zinc biofortification (foliar fertilization and breeding strategies) were milled into five components (whole flour, break flour, reduction flour, fine bran, and coarse bran) and their mineral content and nutritional components were evaluated. The results revealed that biofortification greatly increased the Zn concentration (by 30.58%-30.86%) and soluble Zn content (by 28.57%-42.86%) of whole flour after digestion. This improvement is mainly in break flour, reduction flour, and fine bran. Meanwhile, the contents of macronutrients including ash, lipids, and proteins and micronutrients containing iron, calcium, and vitamins (B(1), B(6), and B(9)) increased after biofortification. In addition, there was a decline in the concentrations of vitamins B(2) and B(5). Although dietary fibers and starch are the major carbohydrates, total dietary fiber exhibited a declining trend in coarse bran, and starch exhibited a rising trend in break and reduction flour. There was a decrease in the molar ratio of phytates: zinc did not promote a significant improvement in zinc bioaccessibility. These results can be useful for generating wheat varieties rich in micronutrients as well as having better nutritional traits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。