This article aims to investigate the analytical nature and approximate solution of the radiated flow of electrically conductive viscous fluid into a porous medium with slip effects (RFECVF). In order to build acceptable accurate solutions for RFECVF, this study presented an efficient Levenberg-Marquardt technique of artificial neural networks (LMT-ANNs) approach. One of its fastest back-propagation algorithms for nonlinear lowest latency is the LMT. To turn a quasi-network of PDEs expressing RFECVF into a set of standards, the appropriate adjustments are required. During the flow, the boundary is assumed to be convective. The flow and heat transfer are governed by partial differential equations, and similarity transform is the main tool to convert it into a coupled nonlinear system of ODEs. The usefulness of the constructed LMT-ANNs for such a modelled issue is demonstrated by the best promising algebraic outputs in the E-03 to E-08 range, as well as error histogram and regression analysis measures. Mu is a controller that oversees the entire training procedure. The LMT-ANNs mainly focuses on the higher accuracy of nonlinear systems. Analytical results for the improved boundary layer ODEs are produced using the Variational Iteration Method, a tried-and-true method (VIM). The Lagrange Multiplier is a powerful tool in the suggested method for reducing the amount of computing required. Further, a tabular comparison is provided to demonstrate the usefulness of this study. The final results of the Variational Iteration Method (VIM) in MATLAB have accurately depicted the physical characteristics of a number of parameters, including Eckert, Prandtl, Magnetic, and Thermal radiation parameters.
Variational iteration method along with intelligent computing system for the radiated flow of electrically conductive viscous fluid through porous medium.
阅读:5
作者:Shoaib Muhammad, Shah Farooq Ahmed, Nisar Kottakkaran Sooppy, Raja Muhammad Asif Zahoor, Haq Ehsan Ul, Abbasi Aqsa Zafar, Hassan Qazi Mahmood Ul, Al-Harbi Nuha, Abdel-Aty Abdel-Haleem
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2023 | 起止号: | 2023 Mar 9; 9(3):e14365 |
| doi: | 10.1016/j.heliyon.2023.e14365 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
