Artificial Neural Network and Response Surface Methodology Modeling in Ionic Conductivity Predictions of Phthaloylchitosan-Based Gel Polymer Electrolyte.

阅读:4
作者:Azzahari Ahmad Danial, Yusuf Siti Nor Farhana, Selvanathan Vidhya, Yahya Rosiyah
A gel polymer electrolyte system based on phthaloylchitosan was prepared. The effects of process variables, such as lithium iodide, caesium iodide, and 1-butyl-3-methylimidazolium iodide were investigated using a distance-based ternary mixture experimental design. A comparative approach was made between response surface methodology (RSM) and artificial neural network (ANN) to predict the ionic conductivity. The predictive capabilities of the two methodologies were compared in terms of coefficient of determination R² based on the validation data set. It was shown that the developed ANN model had better predictive outcome as compared to the RSM model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。