Heat transfer coefficient measurement of LN(2) and GN(2) in a microchannel at low Reynolds flow.

阅读:5
作者:Baek Seungwhan, Bradley Peter E, Radebaugh Ray
The heat transfer coefficients of single-phase fluids in the laminar flow regime have been studied for decades. However, inconsistent results are found in the literature. The common finding is that the Nusselt number is dependent on the Reynolds number in the laminar flow regime, which is contrary to laminar flow heat transfer theory. Recently, researchers indicated that axial conduction in the wall of the microchannel can affect the measurement. However, there have not been thorough studies that demonstrate consistency or lack thereof between experiment and theory. This study provides an experimental investigation on heat transfer performance of gaseous and liquid nitrogen flow through microchannels with hydraulic diameters of 110 μm and 180 μm. A model has been developed to investigate heat transfer in a microchannel from which analysis shows that the temperature profile of the fluid and wall change non-linearly along the length of the microchannel when the flow rate is low (e.g., Re < 1000). The nonlinear temperature profile conflicts with the assumption of a linear temperature profile commensurate with the traditional Nusselt number estimation method, which leads to dependency on the Reynolds number. Comparison between the experiment and numerical model of the present work validates the conclusion that the heat transfer coefficient is uniform within the laminar flow regime ( Re < 2000) for microchannels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。