The Synthesis of a Large Stokes-Shift Dye and Intercalation into the Nanochannels of Zeolite L.

阅读:9
作者:Walther Fabian, Ecker Achim, Brühwiler Dominik, Bornand Marc
A host-guest-based fluorescent composite with a large Stokes shift was synthesized by intercalating 2,2'-(thiophene-2,5-diyl)bis(benzo[d]oxazol-6-amine) (BBTA) into the nanochannels of zeolite L (ZL) and sealing the pores with (3-aminopropyl)triethoxysilane (APTES). To confirm the orientation of the amino groups in BBTA, a single crystal of 2,5-bis(6-nitrobenzo[d]oxazol-2-yl)thiophene (BBTN) was grown and examined by X-ray crystallography. The evidence of successful intercalation of BBTA into the nanochannels of ZL was provided by fluorescence spectrometry, gas sorption and fluorescence microscopy. BBTA showed a Stokes shift of 6641 cm(-1) (157 nm) in ethanol and 4611 cm(-1) (93 nm) in toluene. The BBTA-ZL composite (BBTA-ZL-s) showed a Stokes shift of 5677 cm(-1) (123 nm) in toluene, and 5450 cm(-1) (124 nm) in ethanol. In addition, the degree of loading was determined and stability against leaching was confirmed. We report the synthesis of this novel composite dye material with potential applications where free dyes are not applicable and which retains a large Stokes shift, independent of its chemical environment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。