The Synthesis of a Large Stokes-Shift Dye and Intercalation into the Nanochannels of Zeolite L.

阅读:4
作者:Walther Fabian, Ecker Achim, Brühwiler Dominik, Bornand Marc
A host-guest-based fluorescent composite with a large Stokes shift was synthesized by intercalating 2,2'-(thiophene-2,5-diyl)bis(benzo[d]oxazol-6-amine) (BBTA) into the nanochannels of zeolite L (ZL) and sealing the pores with (3-aminopropyl)triethoxysilane (APTES). To confirm the orientation of the amino groups in BBTA, a single crystal of 2,5-bis(6-nitrobenzo[d]oxazol-2-yl)thiophene (BBTN) was grown and examined by X-ray crystallography. The evidence of successful intercalation of BBTA into the nanochannels of ZL was provided by fluorescence spectrometry, gas sorption and fluorescence microscopy. BBTA showed a Stokes shift of 6641 cm(-1) (157 nm) in ethanol and 4611 cm(-1) (93 nm) in toluene. The BBTA-ZL composite (BBTA-ZL-s) showed a Stokes shift of 5677 cm(-1) (123 nm) in toluene, and 5450 cm(-1) (124 nm) in ethanol. In addition, the degree of loading was determined and stability against leaching was confirmed. We report the synthesis of this novel composite dye material with potential applications where free dyes are not applicable and which retains a large Stokes shift, independent of its chemical environment.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。