Today, due to the greater knowledge of the side effects of chemical drugs and the favorable pharmacological properties of herbal compounds, the use of these compounds is increasing. Since wounds need fast and efficient healing, wound dressing fabrication methods play an important role in wound healing. In this research, electrospinning process was used to prepare samples. Natural antibacterial compounds, such as curcumin, piperine, eugenol, and rutin were loaded in electrospun nano-fibrous based on polycaprolactone. Three-component novel systems of curcumin-piperine-eugenol (PCPiEu), and curcumin-piperine-rutin (PCPiR) were designed and prepared. Their synergistic effect was investigated and also compared with one- and two-component systems. The results showed that medium diameter nanofibers of PCPiEu and PCPiR samples was 198.38 and 142.60, respectively, and they were obtained in smooth, uniform and bead free morphology using optimization of process parameters. The amount of water absorption and water vapor permeability of the three-component samples were in the appropriate range (8.33-10.42 mg cm(2) h(-1)) for wound dressings. The mechanical properties of samples were reduced compared to the control sample, which required further investigation. Antibacterial tests showed good results for partial toxicity of PCPiEu and PCPiR samples. Antibacterial tests showed minor toxicity in PCPiR samples and good results were obtained for PCPiEu samples. In addition, the results showed that PCPiEu and PCPiR samples exhibited antibacterial activity against Gram-positive bacterium Staphylococcus aureus and Gram-negative Enterococcus faecalis bacterium, so that killing ability of 74% and 75% against Gram-positive bacterium and 99.47% and 96.88% against Gram-negative bacterium were obtained for these three systems, respectively.
Multi-antibacterial agent-based electrospun polycaprolactone for active wound dressing.
阅读:5
作者:Safdari Fatemeh, Gholipour Maryam Darya, Ghadami Azam, Saeed Mahdi, Zandi Mojgan
| 期刊: | Progress in Biomaterials | 影响因子: | 4.400 |
| 时间: | 2022 | 起止号: | 2022 Mar;11(1):27-41 |
| doi: | 10.1007/s40204-021-00176-1 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
