Linking in domain-swapped protein dimers.

阅读:4
作者:Baiesi Marco, Orlandini Enzo, Trovato Antonio, Seno Flavio
The presence of knots has been observed in a small fraction of single-domain proteins and related to their thermodynamic and kinetic properties. The exchanging of identical structural elements, typical of domain-swapped proteins, makes such dimers suitable candidates to validate the possibility that mutual entanglement between chains may play a similar role for protein complexes. We suggest that such entanglement is captured by the linking number. This represents, for two closed curves, the number of times that each curve winds around the other. We show that closing the curves is not necessary, as a novel parameter G', termed Gaussian entanglement, is strongly correlated with the linking number. Based on 110 non redundant domain-swapped dimers, our analysis evidences a high fraction of chains with a significant intertwining, that is with |G'| > 1. We report that Nature promotes configurations with negative mutual entanglement and surprisingly, it seems to suppress intertwining in long protein dimers. Supported by numerical simulations of dimer dissociation, our results provide a novel topology-based classification of protein-swapped dimers together with some preliminary evidence of its impact on their physical and biological properties.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。