Combined application of cheminformatics- and physical force field-based scoring functions improves binding affinity prediction for CSAR data sets.

阅读:17
作者:Hsieh Jui-Hua, Yin Shuangye, Liu Shubin, Sedykh Alexander, Dokholyan Nikolay V, Tropsha Alexander
The curated CSAR-NRC benchmark sets provide valuable opportunity for testing or comparing the performance of both existing and novel scoring functions. We apply two different scoring functions, both independently and in combination, to predict the binding affinity of ligands in the CSAR-NRC data sets. One reported here for the first time employs multiple chemical-geometrical descriptors of the protein-ligand interface to develop Quantitative Structure Binding Affinity Relationships (QSBAR) models. These models are then used to predict binding affinity of ligands in the external data set. Second is a physical force field-based scoring function, MedusaScore. We show that both individual scoring functions achieve statistically significant prediction accuracies with the squared correlation coefficient (R(2)) between the actual and predicted binding affinity of 0.44/0.53 (Set1/Set2) with QSBAR models and 0.34/0.47 (Set1/Set2) with MedusaScore. Importantly, we find that the combination of QSBAR models and MedusaScore into consensus scoring function affords higher prediction accuracy than any of the contributing methods achieving R(2) values of 0.45/0.58 (Set1/Set2). Furthermore, we identify several chemical features and noncovalent interactions that may be responsible for the inaccurate prediction of binding affinity for several ligands by the scoring functions employed in this study.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。