As the resistance of Plasmodium to the existing antimalarials increases, there is a crucial need to expand the antimalarial drug pipeline. We recently identified potent antimalarial compounds, namely harmiquins, hybrids derived from the β-carboline alkaloid harmine and 4-amino-7-chloroquinoline, a key structural motif of chloroquine (CQ). To further explore the structure-activity relationship, we synthesised 13 novel hybrid compounds at the position N-9 of the β-carboline ring and evaluated their efficacy in vitro against Plasmodium falciparum 3D7 and Dd2 strains (CQ sensitive and multi-drug resistant, respectively). All compounds exhibit persistent antimalarial activity against both strains of P. falciparum. The most interesting derivatives had low nanomolar activity against both strains (IC(50) (33) = 4.7 ± 1.3 nM against Pf3D7 and 6.5 ± 2.5 nM against PfDd2; IC(50) (37) = 4.6 ± 0.6 nM against 3D7 and 10.5 ± 0.4 nM against Dd2). Resistance indices (RIs) ranged from 0.9 to 5.3 compared to CQ (RI = 14.4), highlighting their superior consistency in activity against both strains. The cytotoxicity screening performed on HepG2 revealed over 3 orders of magnitude higher IC(50) for most of the compounds, with SIs from 711.0 to 8081.8. Spectroscopic studies explored the affinities of newly synthesised compounds for DNA, RNA, and HSA. Both tested hybrids, 34 and 39, were intrinsically fluorescent in an aqueous medium, characterised by remarkable Stokes shifts of emission maxima (Îλ = +103 and +93 nm for 34 and 39, respectively). Fluorimetric experiments revealed that compound 34, with its shorter and more flexible linker, exhibited at least an order of magnitude higher affinity toward ds-DNAs versus ds-RNA and two orders of magnitude higher affinity toward GC-DNAs compared to 39. The behaviour of the investigated compounds upon binding to HSA is very similar, showing a strong hypsochromic shift of the emission maximum (almost Îλ = -70 nm) and demonstrating their effectiveness as fluorimetric probes for distinguishing between DNA/RNA and proteins.
Towards Novel Antiplasmodial Agents-Design, Synthesis and Antimalarial Activity of Second-Generation β-Carboline/Chloroquine Hybrids.
阅读:4
作者:Penava Ana, MarinoviÄ Marina, de Carvalho Lais Pessanha, Held Jana, Piantanida Ivo, SaftiÄ Dijana PavloviÄ, RajiÄ Zrinka, PerkoviÄ Ivana
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2024 | 起止号: | 2024 Dec 19; 29(24):5991 |
| doi: | 10.3390/molecules29245991 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
