Efficient delivery of multiple resources for emergency recovery during disasters is a matter of life and death. Nevertheless, most studies in this field only handle situations involving single resource. This paper formulates the Multi-Resource Scheduling and Routing Problem (MRSRP) for emergency relief and develops a solution framework to effectively deliver expendable and non-expendable resources in Emergency Recovery Operations. Six methods, namely, Greedy, Augmented Greedy, k-Node Crossover, Scheduling. Monte Carlo, and Clustering, are developed and benchmarked against the exact method (for small instances) and the genetic algorithm (for large instances). Results reveal that all six heuristics are valid and generate near or actual optimal solutions for small instances. With respect to large instances, the developed methods can generate near-optimal solutions within an acceptable computational time frame. The Monte Carlo algorithm, however, emerges as the most effective method. Findings of comprehensive comparative analysis suggest that the proposed MRSRP model and the Monte Carlo method can serve as a useful tool for decision-makers to better deploy resources during emergency recovery operations.
Multi-resource scheduling and routing for emergency recovery operations.
阅读:5
作者:Bodaghi Behrooz, Shahparvari Shahrooz, Fadaki Masih, Lau Kwok Hung, Ekambaram Palaneeswaran, Chhetri Prem
| 期刊: | Int J Disaster Risk Reduct | 影响因子: | 0.000 |
| 时间: | 2020 | 起止号: | 2020 Nov;50:101780 |
| doi: | 10.1016/j.ijdrr.2020.101780 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
