Species-specific gene expression manipulation in humanized livers of chimeric mice via siRNA-encapsulated lipid nanoparticle treatment.

阅读:19
作者:Yamazaki Kazuto, Kubara Kenji, Sugahara Go, Muto Hiroki, Yamamoto Masae, Mano Yuji, Mitsuhashi Kaoru, Yamasaki Chihiro, Ishida Yuji, Tateno Chise, Suzuki Yuta
Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models. Therefore, we aimed to create a new model in which siRNA for mouse cytochrome P450 oxidoreductase (Por) gene was encapsulated in LNP and administered to PXB-mice. We validated the siRNA-LNP system in PXB-mice, showing that a single intravenous injection of LNP-formulated mouse-specific siRNA against transthyretin (Ttr) knocked down Ttr expression in the liver and decreased plasma mouse TTR levels without affecting hepatic TTR expression and plasma human TTR levels. We produced mouse Por-specific siRNA with high in vitro silencing activity (siPOR(Mm)) and confirmed the efficient knockdown of Por expression in the livers of PXB-mice administered intravenously with LNP-encapsulated siPOR (siPOR(Mm)/LNP). siPOR(Mm)/LNP treatment suppressed 4'-hydroxywarfarin, making the S-warfarin PK profile in PXB-mice more similar to that in humans. Thus, mouse-specific siRNA-LNP is a simple system to control gene expression in the remaining mouse hepatocytes of PXB-mice and create more humanized and invaluable models based on PXB-mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。