Optimization of Green Ultrasound-Assisted Extraction of Carotenoids and Tocopherol from Tomato Waste Using NADESs.

阅读:6
作者:Badea Georgiana Ileana, Gatea Florentina, Litescu-Filipescu Simona Carmen, Alecu Andreia, Chira Ana, Damian Celina Maria, Radu Gabriel Lucian
The purpose of this study was to extract the lipophilic fraction from one of the largest source of waste in the industrial sector, namely, the tomato residue from processing the fruit. In order to make this process more environmentally sustainable, this study used a green extraction protocol employing natural deep eutectic solvents (NADESs) combined with a less energy-consuming technology, the ultrasound-assisted extraction (UAE) method, to simultaneously recover carotenoids and tocopherol from dried powder tomato waste. Two NADESs, one hydrophilic and one hydrophobic, were prepared and compared to support high extraction efficiency and increase the stability of the extracted compounds. The optimal extraction parameters were identified as choline chloride:1,3-butanediol (1:5)-based NADES, a solid-to-liquid ratio of 1:20 (w/v), time of extraction 12 min, temperature 65 °C, radiation frequency 37 Hz, and an ultrasound power level of 70%. The extraction process was intensified and resulted in extracts rich in lycopene (215.13 ± 4.31 μg/g DW), β-carotene (206.95 ± 3.27 μg/g DW), and tocopherol (130.86 ± 8.97 μg/g DW) content, with the highest antioxidant capacity 93.84 ± 0.18 mM Trolox equivalent. Incorporating NADESs for the extraction of bioactive compounds offers numerous benefits, such as improved sustainability, enhanced extraction efficiency, better protection of sensitive compounds, and reduced environmental impact. These advantages make NADESs a promising alternative to traditional organic solvents, especially in industries that require natural, green, and efficient extraction processes for valuable bioactive molecules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。